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1 Introduction
This report documents the results of a performance analysis performed on version 1.4.0
of the Dante SOCKS server implementation from Inferno Nettverk A/S. The testing
was done slightly prior to the release of Dante 1.4.0, with the code being mostly iden-
tical to the 1.4.0 release code.

The load analysis was done on a machine running in production at a company using
Dante on several machines. The analysis was done on one of these machines over
a period of roughly two weeks, with up to 25,000 simultaneous active clients being
handled during peak times.

This report first describes the basic testing methodology and test environment, and
then provides a general overview of the collected data to provide a context for under-
standing the load the system was placed under, the amount of data transmitted, the
number of clients, etc. The report additionally looks at some interesting data points in
more detail, such as the ability of Dante to adapt to abrupt changes in network traffic
and the resource requirements of different aspects of Dante. Finally, the report dis-
cusses challenges related to doing this type of performance evaluation and considers
some possible improvements for future versions of Dante.

2 Executive summary
Dante is a product developed by Inferno Nettverk A/S. It consists of a SOCKS server
and a SOCKS client, implementing RFC 1928 and related standards. It is a flexible and
scalable product that can be used to provide convenient and secure network connectiv-
ity.

The performance of the Dante server running on a highly loaded machine with 16
2.40 GHz Intel Xeon CPU cores and 32 GB of RAM was measured over two weeks
and the following behavior was observed:

• Sustained send/receive rates of around 0.8 Gigabit/s in each direction and com-
bined rates of around 1.5 Gigabit/s (see Figure 1).

IP-packets are for most of the two week period received and transmitted at
a steady combined rate of around 250,000 packets per second, with around
150,000 of these being TCP segments, and around 100,000 being UDP pack-
ets. Roughly the same amount of packets are sent and received.

• Between 15,000 and 25,000 concurrent users were handled without any identi-
fied performance problems (see Figure 2).

• Good ability to quickly adapt to sudden load changes (see Figure 3, where on
day 10 there was likely an external network outage temporarily disconnecting all
clients), by first quickly decreasing the amount of Dante processes as the number
of concurrent users falls, and then handling the sudden burst of new users by
adding new processes when the traffic returns.

• The machine has enough memory, and also enough CPU capacity most of the
time.
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3 Production environment
The production environment consists of the machine the Dante server was running on
and the Dante build used on the machine.

3.1 Machine description
The production machine has a 16-core 2.40 GHz Intel Xeon CPU and 32 GB of RAM,
making it a fairly powerful machine with a high amount of memory by todays stan-
dards. It should be well suited for running Dante with a high load.

The machine runs a 64-bit Linux distribution and uses kernel version 3.2.0-4. Both
incoming and outgoing traffic passes over the same interface (eth0).

3.2 Dante configuration
A non-released snapshot of the Dante source code was used on this machine, with the
source code essentially being identical to the subsequent official 1.4.0 Dante release.

Some compile time adjustments were made to the Dante server, using the following
configure option:

–without-gssapi GSSAPI support was not needed on this machine and using this option disables
the GSSAPI support and reduces the amount of memory required by Dante.

The Dante -N 4 runtime option was additionally used to improve performance on
this highly loaded machine, leading to four Dante mother processes being used to re-
ceive client requests. The -n option was also used to disable TCP keep-alive messages,
due to the preference of the site operator.

Only errors were logged by the Dante server, meaning very little was written to the
log files during normal usage.

4 Measurement methodology
The performance analysis was performed in a production environment, and as such, it
was desirable to monitor the server without any additional server logging or configura-
tion changes, but this made it necessary to limit data collection primarily to information
obtainable via system tools such as ifconfig and vmstat, in addition to the information
Dante provides via its setproctitle() calls, which includes an overview of the current
number of active clients.

This monitoring approach places relatively little extra load on the system, but the
values obtained are not always entirely exact. For example, having the Dante server log
data traffic would allow exact values for transmitted data and protocols to be obtained,
but at the cost of increased system load due to the overhead from logging. Obtaining
these values instead from ifconfig means that traffic not going to or from the Dante
server might inflate the number of transmitted bytes, so this approach is only usable
if the vast majority of traffic on the interface is to or from the Dante server. For this
machine, running the Dante server was the main purpose, which should make the data
obtained via ifconfig be fairly accurate, if somewhat limited in detail. The bandwidth
measurements that are listed in the results with a ”per second” rate are based on aver-
aging the bandwidth measured by sampling done every 15 seconds, which should be
unproblematic due to the measurements spanning more than two weeks.
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The CPU usage information obtained via top and ps is likely to be slightly lower
than the actual load on the machine; because only CPU usage for each running pro-
cess since the last sample point is available. This means that the CPU time spent by
processes that terminate will only be measured up to the last sampling point before the
process exits. Likewise, processes with a lifetime of less than the sampling interval
might not be observed at all, if they are created and exit between two sampling points.
Most CPU intensive processes were however long-running on this machine, so this
should not have significant consequences for the measured results, except for probably
giving slightly lower CPU usage values and some information lost during spikes of
activity, as is discussed later.

Data collection was done via a script that ran measurement programs roughly every
15 seconds and stored the output to disk. The resulting text files were later analyzed
and interpreted, with the results presented in this report.

There are some practical consequences resulting from the analysis methodology
used:

1. The collected data is not obtained in an atomic manner.

2. Data collection is affected by (and to a lesser degree affects) the system load on
the machine.

The first point is primarily relevant when data from different system commands
are compared. Data is collected at 15 second intervals and grouped based on the 15
second interval it was obtained in. With some commands executed in parallel and
some sequentially, there will always be some variability concerning when in the 15
second interval a command was executed. The difference in time should however not
exceed 15 seconds (not counting command execution time). There potentially being a
difference of up to 15 seconds between values merged into the same data point should
be considered when data from different system commands are analyzed together, but
with the full data set spanning two weeks, a difference of a few seconds should not
have a large impact on the results overall.

One merged data set with data combined from all system commands was created
with complete information from the different commands for most data points; the num-
ber of data points available for each command varies from 98.62% and 99.24%. Some
data points missing data from some commands is partly a result of a limitation in the
collection procedure. A fixed delay of 15 seconds in the data collection script resulted
in a certain amount of drift between each data point due to time also being spent on
command execution in addition to the fixed delay. This has been compensated for in
the data analysis, but there are also changes in the time between data points caused by
high system load.

When the machine is under very high load, scheduling might result in more than 15
seconds passing between each time data is collected. While this means that less precise
information will be available when the system is under high load, the variability in time
between each data point also provides an additional indication of when the system has
been so highly loaded that normal process scheduling has been significantly affected,
giving an indication of points in the data set that are potentially interesting to look at in
more detail.

Figure 4 shows the time series of data with the difference in time between each
snapshot interval shown. For the majority of the values, the interval values are between
15 and 16 seconds, but there are some higher spikes, especially during the third day,
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Figure 4: Snapshot interval lengths

with the highest being 133.36 seconds long, almost nine times longer than the normal
delay of 15 seconds. This high point is examined in more detail in Section 10.

The upper part of the distribution of the interval lengths can be seen in Figure 5,
showing the cumulative distribution function for the snapshot length values. While
most of the values do not exceed 20 seconds, there is a tail with around 0.02% of the
values being over 20 seconds.

It seems natural to conclude that the high interval values are caused by scheduling
problems due to the machine being highly loaded at these times.

For the actual data analysis, the variability in interval times meant that it was neces-
sary to be careful when looking at the difference between data points. The magnitude
of changes in values between data points might be misleading unless the time elapsed
is also considered, meaning that the rate of change needs to be examined in many cases.
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5 Analysis methodology and limitation
Along with a general overview of the behavior observed on the machine, we also look
at some specific events in more detail and for each event there are two main factors that
are considered:

• Any observable changes in the collected data.

• The event or events that resulted in the changes.

Both are interesting for multiple reasons. In cases where unwanted behavior is
observed, it is desirable to know the underlying reason or set of events that led to the
behavior in order to be able to make adjustments to the behavior in Dante, should there
be a better way to respond when similar events occur. In cases where the observed
behavior not necessarily is undesired, knowing what it is might still help when trying
to analyse the data changes that are observed.

Underlying events can however only be implied from the observed behavior, which
means that the quality of the collected data affects how simple it is to attempt to deduce
what the underlying event was. When an event results in, for example, high load, the
quality of the collected data might be reduced as a result of the collection processes not
being able to run as frequently as when the system load is lower.

These limitation make it possible that what occurred on the machine at any given
time might be misinterpreted or that data points that would be necessary to determine
what happened might be missing, but there should still be sufficient information avail-
able to be able to identify cases where data might be missing. Quite a lot of different
information is also collected, which provides multiple ways to analyze any given event.
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6 Performance and load analysis
We first look at the overall load on the machine.

6.1 System load
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Figure 6: System load average

Figure 6 shows the load average on the machine for the two week period, as re-
ported by uptime. Without attempting to interpret the absolute numerical values re-
ported, the load is non-zero for most of the time, and has some somewhat regular
changes that are possibly related to the time of day, without the patterns clearly point-
ing towards any specific timezone.

There is also one spike down at the end of the 10th day, with the load quickly going
down towards zero, before gradually increasing again, but to a somewhat lower level
than before the spike down. This spike is examined in more detail in Section 8.

6.2 Network usage
Figure 7 shows the transfer rate of data passing through the interfaces on the machine,
with traffic for all interfaces (eth0 and lo) summarized. As both traffic between clients
and the Dante server, and traffic between Dante and the target servers pass over the
same interface, and no information about transmitted data is logged by Dante, it is
not possible to provide a more detailed breakdown of how much data is transmitted
via Dante, but almost all of the data will have passed via the Dante server, as there is
known to be only negligible amounts of non-Dante traffic on the machine most of the
time.

The machine receives and sends data at a fairly stable rate of around 0.7−0.8 Giga-
bit/s in each direction, for a total combined rate of around 1.5 Gigabit/s passing through
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Figure 7: Bandwidth usage

Dante. A spike down towards a rate of zero can be seen also in this plot at the end of
day 10. The transfer rate gradually recovers, but with a slightly different traffic pattern.

One point to note with the configuration on this machine is that the use of a sin-
gle physical NIC1 for both the internal and external Dante interfaces likely limits the
achievable traffic rate. Rather than having the client side on one physical network in-
terface card and the target server side on another card, on this machine both logical
interfaces share a single physical NIC. Even so, we measure transfer rates of up to
0.9 Gigabit/s in each direction of the full-duplex network link, so the machine and
Dante does manage to push traffic up to near the saturation point for the 1 Gigabit/s
link.

The division of the traffic between different protocol types is not available on the
byte level via the system tools used to collect data, but netstat provides information
about package counts for different protocols, which is shown in Figure 8, for TCP,
UDP and ICMP, along with the total number of IP-packets.

On a per-packet/segment basis, TCP traffic appears to represents the majority of
the traffic, but there is also a significant amount of UDP traffic. There is interest-
ingly enough a gap between the number of received and transmitted TCP segments,
with a higher number of received segments. The reason for the difference between the
two values is unknown, but might be related to the SOCKS protocol processing, as a
SOCKS request is performed between the SOCKS clients and the Dante server, or it
might be related to how the kernel on the machine Dante is running on handles traffic
before it is transmitted. It would however likely be prudent to see if similar behavior
is observable in a more controlled environment, so examining this in more detail might
be interesting in future experiments.

IP-packets are for most of the two week period received and transmitted at a com-

1Network Interface Card
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Figure 8: Per-protocol packet transmission overview

bined rate of around 250,000 packets per second, with around 150,000 of these being
TCP segments. TCP traffic is fairly stable during the whole period, while the UDP
traffic gradually increases from 50,000 per second to 100,000, before dropping towards
zero on the 10th day. After this, the UDP traffic starts gradually increasing again.

ICMP traffic is very modest compared to UDP and TCP, with around 130 packets
received per second and 1700 packets per second transmitted.

The change in load at the end of the 10th day appears to primarily have a lasting
affect on the UDP traffic, with TCP traffic quickly resuming the previous rate.

6.3 CPU usage

Figure 9 shows the CPU usage for the period, based on data from top. The Dante value
is obtained by summarizing the CPU usage of each Dante process, and the non-Dante
value by summarizing the CPU usage of each non-Dante processes.

As can be expected, Dante processes account for most of the CPU usage, totalling
around 80− 90%. Idle CPU time lies at around 10%. Non-Dante processes have very
little CPU consumption, most of the time less than 3 − 4%. Slightly less than 40% of
the CPU time is spent in the kernel, with soft interrupts consuming around 5% CPU
time. Slightly more than 40% of the CPU time is spent in user space. As the purpose
of the Dante server is to transmit data, this is largely as expected; data is transmitted
from the network, to kernel memory, to application memory, and then back again in
the reverse order. All this data movement relies on both the application and the kernel
and CPU time is split fairly evenly between the two.

The spike down at the end of the 10th day can be seen also in the CPU usage,
giving a reduction in the CPU usage of Dante, and a corresponding upwards spike in
the idle CPU time. The load appears to be slightly lower after the spike down. The
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Figure 9: CPU usage

spike down in CPU usage corresponds to the similar spike down in network traffic,
seen in Figure 7 and Figure 8, as would be expected if the network traffic was suddenly
cut off or significantly reduced.

Apart from the spike down, the load is fairly constant. The CPU idle time generally
being at around 10% might indicate that the performance of Dante on this machine is
not limited by the CPU.

To look at the CPU usage in Dante in a bit more detail, Figure 10 shows the highest
CPU usage reported for a process of a given type at any point, and gives an indication
of which Dante activities are responsible for most CPU consumption. The CPU usage
values have been calculated based on the CPU time output reported by ps. The data
has then been smoothened (using the gnuplot smooth bezier option) to make it easier
to interpret.

The Dante io processes, responsible for reading and writing data after SOCKS pro-
tocol processing has completed, has both the highest and most variable CPU usage,
with CPU usage values of around 30 − 40%. The high CPU usage of the io processes
corresponds well with the high amount of system CPU usage seen in Figure 9; sending
and receiving data is the most resource intensive operation of Dante, as would be ex-
pected because the main task of the Dante server is to relay data and a high amount of
data passes through the machine.

The Dante mother and negotiate processes have fairly constant and similar CPU
usage, at around 15%.

Very low CPU usage is seen for the request process type, with usage at around
1− 2%. The monitor process is not in use and has no CPU consumption.

While the data in Figure 10 shows the smoothened data from top, the raw data can
be seen in Figure 11. This plot essentially shows that there are some high spikes in
the data, as reported by top. There is especially one spike after day 2, where very high
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CPU usage is reported. Some of the values reported are above 100%, which is clearly
impossible, but as discussed in Section 4, the data is not obtained atomically, which
can result in inaccurate data when the machine is highly loaded.

The high CPU usage spike appears to affect multiple Dante process types and the
events at this data point is examined in more detail in Section 10.

6.4 Processes

An overview of the processes running on the machine can be seen in Figure 12, with
the total number of processes varying for most of the time between 1200 and 1400,
with some spikes up towards 1600.

The majority of processes are from Dante, which has between 800 and 1000 pro-
cesses for most of the time. Non-Dante processes number between 400 and 600, and
there appears to be some degree of correlation between both Dante and non-Dante
processes, with many of the same changes occurring for both.

A significant spike down to only 84 Dante processes can be seen at the end of day 10
also in this figure, as it would appear that the reduction in network usage corresponds
with a reduction in the number of Dante processes.

The composition of the Dante processes is shown in Figure 13, with the majority
being io processes, varying between 600 and 800 in number. The io process count
is fairly variable, presumably adapting to load changes as the number of active client
sessions increases or decreases.

The number of request processes is relatively stable at between 100 and 150, with
some spikes higher. The negotiate processes also show some spikes but are also fairly
stable, with around 10 to 15 processes.

The number of mother and monitor processes is always constant, at 4 and 1, re-
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Figure 11: Dante per-process type highest CPU usage

spectively2.
A spike down at the end of day 10 can be seen also in this plot, and clearly affects

the number of io processes, which quickly falls towards zero and then recovers. This
event will as noted above be examined later, in Section 8.

6.5 Memory usage

The overall memory usage on the machine is shown in Figure 14, and there are some
interesting changes that can be seen. The machine has a fairly large amount of memory
(32 GB) and even with a large number of processes, there is hardly any swap usage
(only around 22 KB most of the time). The changes that occur happen in the amount
of data stored in main memory and there are two primary sets of behaviors that can be
seen.

The first is a variability similar to the load-dependent changes seen in the network
traffic and CPU load plots. The used, active and inactive memory values all show this
type of variability. For the active memory, the overall value is fairly stable at around
10 GB. The used and free memory values, on the other hand, show a correspond-
ing overall trend either upwards (used memory), or downwards (free memory). The
amount of used memory gradually increases from around 10 GB to 25 GB, while the
amount of free memory decreases from around 20 GB to 5 GB. The likely reason for
this overall trend can be seen in the swap cache and inactive memory values, that grad-
ually increase from around 0 GB to almost 20 GB for the swap cache and above 10 GB
for the inactive memory. A notable exception to the trend occurs at the beginning of the

2Some additional mother processes run at certain times due to a script running on the machine that
attempts to restart the Dante server in case it is no longer running, but these processes quickly exit and never
receive any client requests since Dante was never terminated during this measurement period.
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Figure 12: All processes

third day, when the amount of inactive memory suddenly falls to zero, and this point is
examined in more detail later, in Section 7.

As with the other plots, a downwards spike occurs at the end of the 10th day, and
is likely caused by the reduction in Dante processes at this point, as seen in Figure 13.
That the swap cache and inactive memory values appear unaffected by this indicates
that these values are not directly related to the Dante processes.

6.6 Clients and connections

The Dante io, negotiate and request processes call setproctitle() when necessary to
update the process title with information on the current number of active client slots,
making it obtainable via ps. This client data is shown in Figure 15, along with the
connections established value reported by netstat, which shows the current number of
established TCP connections on the machine.

All values show what are likely load-related changes, but are still fairly stable, with
gradual increases and decreases. The number of active io process clients varies between
around 17,500 and 25,000, with 10,000 in the in progress state. Around 475 clients are
in the negotiate state and 30 in the request state.

The spike towards zero at the end of day 10 can be seen also in this plot, and is
followed by a spike up in the number of clients in the in progress state, indicating that
many new client connections were received in a short time.

After the spike down there is also a small reduction in the gap between the number
of io clients and the total number of established TCP connections. Any active TCP
SOCKS session consists of two TCP connections (one between Dante and the SOCKS
client, and one between Dante and the target server), meaning that if all clients shown in
the plot represented TCP sessions, the total number of established connections should
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Figure 13: Dante processes

be at least twice the number of active io clients, which is clearly not the case here. Part
of the reason for this will be due to some clients using UDP instead of TCP, which
needs a TCP connection between the SOCKS client and Dante, but not between Dante
and the target server.

The extent to which the established connections values consist of UDP clients can
be seen at data points just after the spike down. As seen in Figure 8, the UDP traffic
takes a long time to recover after the spike down, while the TCP traffic quickly returns
to almost the same rate. The reduction in difference between the io client values and
the established connections values is likely related to this. While it cannot be said
for certain whether the UDP clients reconnect or not after the spike down, or if they
simply do not transmit as much data, it seems like there are fewer UDP clients, and
that the remaining clients primarily are TCP clients. In which case, the total number of
established connections is somewhat low.

Most likely this is caused by TCP connections that have not fully terminated, but
are no longer in the ESTABLISHED state, or are not yet fully established, but we
unfortunately have no information on the state of the TCP connections and cannot
verify this. However, if this is the case, it would appear that a significant portion of the
io processes handle sessions that are not currently active, but rather are in the process
of being shut down or established.

6.7 Disk usage

Figure 16 shows the rates at which disk sectors are read and written from and to the disk
on the machine. The average write rate varies between roughly 10 and 400 sectors/s,
while the read rate is near zero, with the exception of a few spikes above 10 sectors/s.
Assuming a sectors size of 512 bytes, this corresponds to an average write rate of up to
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Figure 14: Memory usage

200 KB/s.
With this little disk activity, the handling of disk I/O will not have competed with

network I/O to any significant degree, and the data collection script is likely the main
source of data being written to the disk.

6.8 Summary
The examined machine is under a fairly high load, with 0.7 − 0.8 Gigabit/s of traffic
passing through the one network interface on the machine, in both directions. The
majority of packets are from TCP traffic, but there is also a significant amount of UDP
traffic. The traffic is primarily generated by the around 20,000 active clients that send
and receive data through the Dante server. The load results in around 90% of total CPU
usage from the Dante processes, of which there are around 1200 − 1400. Memory
consumption is not a problem on the machine, which has 32 GB of memory, and no
swapping occurs.

This machine would appear to have been well dimensioned for the load and gener-
ally uses most of the CPU and network capacity, without appearing overloaded, at least
for most of the two week period that was examined.

Some periods of interesting behavior that break with the overall pattern were ob-
served, including significant reductions in network traffic, sudden spikes in CPU load
and changes in memory usage. Some of these events are examined in later sections.
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Figure 16: Disk I/O rate
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7 Memory changes

Figure 14 shows a gradual increase in the Swap cache and Inactive memory for the
entire time data is collected on the machine, with the inactive memory having one
spike down towards zero after two days, shown in more detail in Figure 17.
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Figure 17: Process CPU usage and inactive memory usage

The spike down in inactive memory corresponds to a short spike up in CPU usage.
The CPU time line corresponds to the CPU time of non-Dante processes, with some
constantly running processes removed, and turned out to have been caused by a combi-
nation of gzip and tar. At this time a copy had been made of the log data accumulated
for these measurements so far and this action resulted in the change in inactive memory.

The data collection script regularly writes the output from ps, top and various other
commands to disk, and the Linux kernel appears to retain a copy of this data in main
memory. When a copy was made of the collected data after two days, the log data
was presumably removed from the inactive list maintained by the kernel and the newly
created compressed archive was added to the swap cache.

After this point, the inactive memory grows constantly again, along with the swap
cache, which is not affected by the data being accessed. Because there is no shortage
of memory in the machine, both values have room to grow for the entire period the data
is collected.

Figure 18 shows the inactive memory/swap cache data along with the number of
aggregated write requests, as reported by vmstat. The values grow at roughly the same
rate and the total size of the swap cache at the end of the two weeks is around 18 GB,
which corresponds well with the uncompressed measurement data, which has a size of
around 17.2 GB.

The gradual increase being a result of the data collection process also explains why
the inactive memory and swap cache are almost empty at the start of the measurement
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Figure 18: Disk write requests and memory usage

period and then gradually increase the entire time; the values start increasing at the
same time as the measurement script is started. In conclusion, the increase in inactive
memory/swap cache is not an indication of a memory leak or similar in Dante.

A more detailed look at the memory usage can be seen in Figure 19. The data in
this figure is based on summarizing the memory values for each Dante process, which
gives higher total values than what was actually used (due to shared memory not being
accounted for), but the relative changes in the values are still interesting. As can be
seen, there are no indications of gradual memory increases here either. Because the
data was collected with a very high load over two weeks, it would be expected that any
memory leaks would be visible in this period, unless the memory loss is very small,
but no indications of memory leaks can be observed.
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8 Traffic loss spike

A significant spike down in traffic at the end of day 10 can be observed in most of the
data presented in Section 6, such as in Figure 8. This event is examined in more detail
in this section.

8.1 Network traffic
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Figure 20: Spike network traffic changes (eth0)

A closeup of this spike can be seen in Figure 20, which shows a logarithmic
overview of the number of packets transmitted per second. Each 0.01 increment on
the x-axis corresponds to roughly 15 minutes, giving a total of roughly 90 minutes for
the whole period shown. At a point after 9.72, the number of received and transmitted
packets starts to fall, with the number of received packets falling fastest. Packets are
still sent, at a lower rate, for some minutes, before the send rate also falls to almost
zero. After roughly fifteen minutes with very little traffic, the traffic starts recovering
with a spike upwards in traffic. The interface saw frequent receive overruns before the
spike down but not immediately after the traffic starts increasing. Possibly due to the
load on the machine being lower afterwards for the period shown.

A closeup of the point where the traffic starts going up again is shown in Figure 21.
The received packet rate is slightly higher than the rate for transmitted packets, but
neither can be seen in the collected data to start rising first.

Figure 22 shows various TCP related network statistics, including the number of
connection resets sent and received, and the rate of new connections. All values appear
to fall off at the same time; there is no indication that connections being blocked (re-
sulting in a sharp increase in received connection resets) is the reason for the drop in
traffic. After the spike down, the number of incoming/outgoing connections resumes
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Figure 21: Spike network traffic changes (eth0), recovery

at the same rate as before the spike, but the number of connection resets sent by the
machine is notably lower.

The number of established connections, as reported by netstat, can also be seen in
Figure 23 to largely recover. From around 27,000 connections it falls to 191 at the
lowest point and then recovers to around 26,000 again.

The data for all protocols is shown together in Figure 24. The number of transmitted
and received TCP segments recovers to almost the level seen before the spike down at
the end of the shown time period, but there is still less traffic transmitted in total. The
difference is caused by UDP, which appears to recover much slower. The reason for
this is not known, but might be application related; perhaps the used UDP applications
need more time to recover.

By looking only at the traffic data, there is no clear indication as to the reason for
the sudden loss of traffic. Possible explanations would include network problems or
some problem with the Dante server that suddenly resulted in many Dante processes
either ending client sessions or terminating. A more detailed analysis provides more
information below.

8.2 Underlying event

The information collected about Dante shows how it behaves in this period, with Fig-
ure 25 showing an overview of the processes on the machine, grouped into Dante and
Other (non-Dante) processes. Several observations can be made from this plot, firstly
that the total number of Dante processes falls significantly, while there is no signifi-
cant change in the number of non-Dante processes on the machine. After falling from
around 900 to 84 at the lowest, the number of Dante processes then quickly increases to
around 950. However, in regards to trying to determine what caused the drop, the most
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Figure 22: Spike TCP network statistics

important observation is the change in Running/Sleeping processes at the point before
the drop starts. There is a constant gap between the Total number of processes and the
number of Sleeping processes, showing that the processes on the machine (including
Dante processes) are active. This gap then closes before the number of processes start
falling, first gradually, then quickly. The Dante processes appear to have been inactive
before they start terminating, which would be consistent with a network problem or
change externally to the machine.

Figure 26 shows the interface packet data and process overview in the same figure,
and this observation is confirmed here. The traffic on the interface starts falling off first,
followed by an increase in the number of sleeping processes and then a reduction in the
total number of processes. When the traffic returns, the number of processes quickly
rises along with the traffic.

While it is possible that the traffic stops because all Dante processes suddenly stop
sending traffic, this seems unlikely because the machine would still receive new incom-
ing connections from new clients as this is handled by the kernel and not Dante, but
Figures 22 and 23 show no indication of this. It seems very likely that the spike down
is caused by network traffic no longer reaching the machine.

This situation also provides a good opportunity to examine how Dante reacts to this
type of event; going suddenly from handling a large amount of clients and traffic to all
client sessions ending.

8.3 Dante reaction

A more detailed overview of the different Dante process types can be found in Fig-
ure 27. Most of the Dante processes are io processes and these are also the ones most
affected by the loss of traffic. The number of io processes falls from over 750 to 4, then
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Figure 23: Spike established TCP connections

increases to more than 800. In other words, slightly more than it started with. This is
slightly surprising because the previous plots have shown that the total traffic is lower
after the spike than it was before it, but Dante will need some time to fine-tune the
number of different processes it needs to handle the traffic load.

The number of request processes lies at around 115 before the loss of traffic, then
falls to 71, before returning to around 110− 130 processes.

The request processes primarily handle connection setup and checking of whether
the ACL rules permit connecting to the target server. That the number of request pro-
cesses is not falling further might indicate improper, or at least suboptimal, cleanup of
request processes in Dante. This should be investigated further so the exact cause can
be determined.

The lower range of the figure is shown in Figure 28, and shows the other process
types, that have relatively few processes in total. Since the number of mother and
monitor processes is constant, only the number of negotiate processes is interesting. It
falls from around 15 to 4 and then bounces back to around the same number, as can be
expected.

From this it would appear that with the exception of the request process, the Dante
server is able to quickly adapt resource usage (in the form of processes) to the current
load, both when the load drops and when it increases. As the data is collected at
15 second intervals, there might have been spikes between the data points that were
not observed, but from the data available, it would appear that both the termination and
addition of child processes by Dante is fairly quick.

The Dante io and negotiate processes handle multiple clients, each client corre-
sponding to one used slot in one process. The number of used slots is shown in Fig-
ure 29. For the io processes, the number of clients falls from above 20,000 to zero. All
used slot types fall to zero, except the number of request process slots, which has 7 as
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Figure 24: Spike all protocols network statistics

the lowest value. What the request process is waiting for and why it cannot close these
7 slots is unknown at the moment.

The number of clients quickly recover, with the number of used io and in progress
slots actually going to a higher level than before the spike down. The higher number
of used slots explains the higher number of io processes seen in Figure 27, but not why
the number of active clients appears to be higher than would be expected by looking
at number of established connections or the amount of transmitted traffic. There is no
available information about whether a client uses UDP or TCP so it is not possible to
see if the composition of clients has changed in some way, but it would appear that the
amount of data transmitted per client is lower than before the spike.

Figure 30 confirms this, showing the average transfer rate (based on the sum of read
and written bytes for all interfaces) per active (not in progress) io process slot. The rate
is around 140 Kilobit/s before the spike, then falls down to around zero, before spiking
up and gradually increasing to around 120 Kilobit/s, i.e., slightly lower than before the
spike down. Possibly this is thus partly a client application issue, with clients initially
sending and receiving less data.

8.4 Resource usage

The changes in the number of Dante processes and the network load also makes it pos-
sible to see the effects on resource usage on the system. Figure 31 shows the memory
usage, as reported by vmstat. The amount of used and active memory falls (and the
amount of free memory rises correspondingly) at the start of the spike down, and then
gradually increases afterwards. This is as would be expected due to the termination of
Dante processes, and later, the creation of new processes as the network traffic returns.

Figure 32 shows the rate of interrupts and CPU context switches, as reported by
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Figure 25: Spike process overview

vmstat. The number of context switches returns to around the same level as before
the spike in the shown time interval, while the number of interrupts reaches a higher
level. It is difficult to say for certain, but it would appear that the number of interrupts
follows the number of used Dante io slots, while the number of CPU context switches
more closely follow the number of Dante processes, while also showing some of the
variations that can be seen in the packet rates. As multiple processes handle the sending
and reception of client data it would seem logical that a higher number of clients (and
processes) would result in an increased number of context switches, and that there is
also a relation between I/O and context switches.

The general CPU usage is shown in Figure 33. Before the spike, around 90% of
the CPU time is used by Dante processes, but this falls to zero when the spike down
occurs. It then gradually increases up towards 70% as network traffic is again being
forwarded. The user and system CPU usage start at around 40% and 45%, fall to less
than one percent, and then start increasing along with the increase in Dante CPU usage.

This behavior is as would be expected; there are no indications in the data of sudden
spikes or CPU usage when there is no traffic. There is no apparent change in the ratio
for user and system CPU time before and after the spike, and the idle CPU time goes
to around 99% during the spike down, indicating that there is very little activity on the
machine when there is no network traffic.

Figure 34 shows the load average for the period, and the difference between the
load average before and after the spike is quite interesting. Before the spike it lies at
around 50, and the one minute load average also falls fairly quickly down to zero, but
for the period shown, it rises to a much lower value than would be expected based on
the amount of traffic being forwarded and the amount of processes being active. The
final value in the shown interval is below 20, and less than half the value from before
the interval. It does however match the amount of UDP traffic quite well, which as can
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Figure 26: Spike Dante processes and interface traffic

be seen in Figure 24 also recovers to less than half of the initial value.
This indicates that the overhead from UDP traffic might be larger than the overhead

from TCP, and this relationship is examined in more detail in Section 9.

8.5 Additional observations
Finally, the spike down provides an opportunity to take a closer look at the effects of
system load on the variation in time between each data point in the data collected for
these measurements. Figure 35 shows time between each data point for several of the
commands that are executed during the data collection. Before the spike down, the
time between each timestamp clearly differs for most of the values but stays in the
range between 15.2 and 15.4 seconds for most of the values. During the period of very
little CPU activity, the interval times fall to below 15.1 seconds and there is very little
variation between each data point. When the machine again starts forwarding traffic,
the variation increases, and for ps, the time between data points clearly also increases,
likely due to the gradually increasing number of processes. The overall difference is
however not that large; the biggest difference is in how variable the interval durations
are.

As noted in Section 4, a fixed delay of 15 seconds obtained with sleep is used
in the data collection script. Ideally the interval should be 15 seconds in all cases
(when possible), so the data collection scripts might likely benefit from being updated
to consider the time already passed before sleeping to give more exact intervals.

8.6 Summary
The spike down in the traffic data appears to be caused by an external event that results
in no traffic from the Internet reaching the machine.
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Figure 27: Spike Dante process types

Dante appears to handle the sudden change in traffic load quite well, both when no
traffic is being received and when it suddenly returns. Dante processes handling io are
terminated on the spike down and the resources consumed by Dante are significantly
reduced. The opposite happens when traffic returns and Dante is able to quickly handle
adding new clients.

Only the request processes appeared to not fully react to the change.
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Figure 28: Spike Dante process types, lower range
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Figure 29: Spike Dante client slots
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Figure 30: Spike average transfer rate per active io process slot
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Figure 31: Spike memory usage
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Figure 32: Spike interrupt and CPU context switch rates
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Figure 33: Spike CPU usage
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Figure 34: Spike load average
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Figure 35: Spike data snapshot interval lengths
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9 UDP traffic, interface errors and CPU usage

An observation made in Figure 34 of Section 8.4 is that the load average appears to
be more closely related to the UDP traffic rate than is the case for TCP. This section
examines this observation in more detail and attempts to determine if it is possible to
say if the performance on the machine is limited by the CPU.
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Figure 36: Packet rate and load average relationship

A scatter plot with the relationship between the five minute load average and the
packet reception rates is shown in Figure 36. The data is based on the entire measure-
ment period. The five minute load average mostly lies between 10 and 60. The highest
packet/segment rate is seen for TCP, with a rate of around 75,000 packets per second
for a large part of the time. The rate for UDP is lower for most of the values, at around
50,000 packets per second. Looking at the total number of received IP-packets, and the
least squares fitted regression lines, it would seem that there is a relationship between
the five minute load average and the packet rate. According to the Linux manual page
for the getloadavg() function, the load average as returned by the function corresponds
to the number of processes in the system run queue averaged over various periods of
time. As Dante uses multiple processes for handling I/O, it would be expected that
large increases in traffic would be a result of increases in the number of active clients
and, as a result, an increase in the number of processes that potentially are waiting to
be executed as there is only a limited number of CPUs in the machine.

By comparing the values for the UDP and TCP traffic, several observations can
be made. Apart from the UDP rate generally being lower, the UDP rate also appears
to be more closely correlated to the load average; higher UDP packet rates generally
correspond to higher load averages. The regression line for the UDP traffic also has
a steeper angle than the line for TCP traffic. It would seem that higher rates of UDP
traffic might impose a higher load on the machine than TCP traffic. This is also to be
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expected, as processing SOCKS UDP traffic incurs a higher overhead than processing
SOCKS TCP traffic. The latter can be forwarded in both directions verbatim (unless
encryption is enabled), while SOCKS UDP traffic to and from the SOCKS client needs
to be encapsulated and decapsulated, due to the extra SOCKS UDP header that is added
or removed.
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Figure 37: Packet rate and Dante io process CPU usage

The relationship between the packet rate and the rate of CPU time increase for
all Dante io processes is shown in Figure 37. With 16 CPU cores, the highest possible
CPU time increase per second is 16 CPU seconds (corresponding to Dante io processes
running on each core for 100% of the time). The scatter plot shows the data for UDP,
TCP and all protocol types, in addition to the least squares fitted regression line for
each data set.

The data in this figure also appears to show a correlation between higher UDP
packet rates and higher io process CPU usage. Based on the regression lines, this
relationship appears to hold true for all three data sets, but for TCP to a much lesser
degree than for UDP. System overhead likely means that using 100% of the available
CPU time is not possible, so around 60,000 UDP packets per second would appear to
be the point at which the ability of this machine to transmit UDP packets at a higher
rate will be limited by the available CPU resources, assuming an equivalent amount of
TCP traffic is present.

Interface overruns and UDP send and receive errors are another indication of the
machine possibly being overloaded. Figure 38 shows a scatter plot of the interface
receive overruns and UDP errors (there are no interface transmit overrun errors in the
data set). There are very few UDP send errors, but both interface receive overruns
and UDP receive errors occur, especially when the Dante io processes use most of
the available CPU time. The regression lines also indicate that higher io process CPU
usage occurs at the same time as higher error rates.
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Figure 38: Packet error and Dante io process CPU relationship

The same error data is shown along with the interface data reception rates in Fig-
ure 39 and basically shows the same relationship; higher reception rates correspond to
higher error rates. That overruns are more likely to occur when more traffic is being
received is fairly logical, but the presence of errors would seem to be an indication of
the machine being overloaded, as it is not always able to handle the data it receives.
The lost packets would likely also result in lower performance as seen by the users due
to the need for retransmissions.

To take a closer look at how frequent the errors are, Figure 40 shows a heatmap
of the interface receive rate and the interface overrun error rate, and most of the time
there are no overruns. Most of the values in the figure are found in the range between
0.74 and 0.81 Gigabit/s. Many of the overruns are also found in this traffic range.

A CDF plot of the errors in the range is shown in Figure 41 and roughly 73% of the
time the receive rate is in this range there are no receive overruns. In other words, 27%
of the time in this range there is at least 1 receive overrun per second, which seems
quite high.

The variation in time between timestamps for data obtained by the collection script
used to build the data set analyzed in this document appears to be a good indicator
of the load on the system, as seen in Figure 35. Higher loads leads to less regular
scheduling and increased time between each snapshot. Figure 42 shows the relationship
between the interface receive overruns and the UDP packet reception errors and the
time intervals for one of the executed data collection commands.

For the interface receive errors there is a slight tendency towards higher intervals,
but it is more obvious for the UDP receive errors. Higher rates of UDP reception errors
appear to occur along with increases in timestamp interval lengths. This relationship
does not appear strange; if the machine is busy, it will likely affect both the ability of
the kernel to keep up with data reception rates and handle CPU scheduling.
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Figure 39: Packet error and interface rate relationship

The relationship between the packet error rate and the system CPU usage is shown
in Figure 43. The interface receive errors clearly start to rise quickly after 40% system
CPU usage is reached. The UDP receive error rate also starts rising, though less fast.

For the user CPU usage and packet error rates, the relationship is shown in Fig-
ure 44. Also here, similar behavior can be seen. For high user application CPU usage,
the interface receive overruns start increasing, but the correlation does not appear to be
as strong as for the system CPU, which is logical. The kernel is responsible for getting
data from the NIC so when it is highly loaded, it will be less able to handle all incom-
ing packets, but even if a user application is busy, this will not necessarily affect the
ability of the kernel to handle network traffic. However, for a proxy like Dante, high
user CPU times will lead to high system CPU times due to data forwarding being the
main activity, so high rates of interface overruns will likely occur when the user CPU
time is high, even though the two evidently are not as closely related as is the system
CPU time and interface overruns.

However, for the UDP receive errors, the correlation between high user CPU time
and higher rates of packet receive errors appears to hold. The figure clearly shows that
error rates start rising along with the CPU usage after it reaches 40%.

As we have shown above, there appears to be a relationship between the UDP
packet rates and the amount of CPU usage. Unfortunately, we do not have any infor-
mation about byte transfer rates for UDP, but it would appear that with high rates of
UDP traffic the machine will become unable to handle the received traffic due to the
overhead of handling UDP.

It is difficult to say if the CPU is what is limiting performance on this machine, as
there might be other external factors that contribute to limiting the achievable through-
put (the machine does for example frequently receive ICMP source-quench messages
when it transmits at higher rates, as shown in Figure 45, but we do not know if the
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Figure 40: Interface error and receive rate heatmap

kernel acts on these to limit TCP rates, and what, if any, effect this has on throughput).
However, even if the machine is not limited by the CPU at present, there does

not appear to be much room for forwarding UDP traffic at higher rates, without being
limited by the available CPU resources. Optimizing the overhead of forwarding UDP
in Dante, to the extent that this is possible, would likely help here. It is also possible
that a different number of clients per process would help, but more systematic testing
will be needed to determine this.

The use of splice(), or a similar copy elimination API, would likely also have an
effect by reducing the system CPU time. Doing this might be difficult for UDP, but
having it for TCP would still provide a benefit for the system overall by freeing up
CPU capacity.
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Figure 41: Interface error and receive rate subset CDF
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Figure 42: Error rates and snapshot interval lengths
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Figure 43: System CPU usage and packet errors
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Figure 44: User CPU usage and packet errors
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10 High timestamp delay

In this section, we analyze one of the points in the data set where there is a long delay
between the collected data points in the measurement data, indicating that the machine
was so busy that data collection could not be done on time.
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Figure 46: Time skip snapshot interval lengths

Section 4 noted that the highest delay between the data points collected during
the measurement was 133.36 seconds, and this data point is shown in Figure 46. All
commands show a long gap for this data point. With 15 seconds being the sample rate,
nine data points should have been collected during this period, and not only a single
data point.

There are also indications that the information collected in the last data point before
the gap is not entirely correct. Figure 47 shows the total CPU time of the Dante mother
processes. These processes never terminate, hence the CPU time values obtained for
these processes after any sampling gap will include the CPU time used by the processes
during the gap. The CPU time consumed by these processes has also shown itself to be
relatively stable on this machine with the given traffic load.

Instead, this figure shows that the last data point before the gap has a significant
step up in CPU usage, while the CPU time after the gap shows the total CPU time to
continue at the same rate as it did before; it does not continue from a higher point,
which would have indicated that the step up represented a significant increase in CPU
usage at this point. It is more likely an indication of the data collection taking a long
time, meaning that a significant amount of time passed between the data point times-
tamp being stored and the ps command completing. As the ps command likely does not
collect information atomically, the collected data might have been gathered over many
seconds, or it might have been simply delayed and represent a point in time several sec-
onds after the recorded timestamp. It is not possible to know what actually occurred,
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Figure 47: Time skip Dante mother process total CPU time

but the data collected in the last data point will need to be interpreted with caution due
to the likely inaccuracy of the data.

The data collected from top, shown in Figure 48, also indicates that a larger amount
of data was lost compared to the surrounding data points. The figure shows the total
amount of CPU time for Dante and other applications, and the values for user/system/idle
CPU time. It also shows the sum of all application values returned by top. Ignoring the
fact that there might be some loss of accuracy due to the low precision in the percent-
ages returned by top, it would be expected that if top was able to completely account for
all CPU usage by all applications, the final summarized value would be 100%. How-
ever, as top also runs at regular intervals (here every 15 seconds), top will presumably
not have information on CPU time for short lived processes that terminate before the
data is collected by top. In other words, the lower the sum value in the plot is, the more
CPU time was likely spent by short-lived and other terminated processes that were not
recorded. In the figure, the CPU time sum value lies at around 97% most of the time,
meaning that around 3% of the CPU time is likely spent by short-lived or terminated
processes. For the first data point after the gap, the sum value falls towards 85%, mean-
ing that around 15% of the CPU time was possibly spent by terminated processes that
were not observed. The reduction might also be caused by top running at a time when
the machine was highly loaded, leading to the collected data being inaccurate.

Looking at the other CPU usage values, there are some other inconsistencies that
also stand out. For the two data points before and after the gap, the user CPU time
increases and the idle time falls. The system value also falls. From this it would
be expected that a higher amount of CPU time would be spent by applications, but
the accumulated time for Dante falls, and for other processes if remains at a very low
value. Assuming that the user/system values reported by top are correct, this is again an
indication of information about applications being underreported. While it is possible
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Figure 48: Time skip summarized process CPU usage

that this was caused by non-Dante processes, it seems more likely that short-lived and
terminated Dante processes were responsible for the missing CPU time.

Looking at a more general value calculated by the system, the load average is shown
in Figure 49, and there is a high spike up for the gap period. The machine was evidently
highly loaded during this period.

In summary, the gap in the collected data points appears to have occurred at a time
the machine was highly loaded, resulting in the data collection script hanging for almost
two minutes. As very little data was collected during the period the machine was highly
loaded, and the information that was collected might not be entirely correct, it becomes
difficult to attempt to determine what actually occurred during this time, and the reason
why it occurred. Transient information such as process information collected by ps and
top appears to be least reliable, while more persistent sources of information such as
the aggregated counters obtainable via ifconfig and netstat should be more reliable, as
long as the possibility that the data in the last data point before the gap corresponds to
a slightly later point in time is kept in mind.

To get a general idea of the events that occurred during the gap with missing data
points, we first look at some of the persistent values that describe system behavior.

The total number of read/written sectors is shown in Figure 50. There are no read
operations reported, and no apparent spike in write operations. Instead, there appears
to have been fewer write operations made during the gap than before and after it; the
values continue to increase at the same rate after the gap. It does not look like disk
I/O was the cause of the gap, but the high load more likely resulted in delays in write
operations from the data collection script as the data set also shows an increase in write
delays for this period (not shown).

Looking at the amount of transmitted bytes on the machine, shown in Figure 51,
there is no indication that there was a spike up in network traffic. It looks like there was
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Figure 49: Time skip system load average

no change in the amount of transmitted data during the gap; data appears to have been
transmitted at the same rate as before and after the gap. The same appears to be the
case for the number of transmitted packets and established/received connections (not
shown).

From the above values there is no apparent reason for the high load; it is necessary
to examine also the transient data in more detail.

This data must, as noted above, be interpreted with some care, but it does also
provide some information about events that occurred during the gap.

Figure 52 shows an overview of the Dante/non-Dante processes, as reported by ps.
Nothing can as expected be said about the period without data points, but it can be seen
that there are no big spikes up or other significant changes either before or after the
gap.

The division between different Dante process types is shown in Figure 53. For the
Dante io processes, there is no apparent change of significance, while both request and
negotiate type processes appear to show an increase both before and after the gap. This
might, as noted above, be due to inaccuracy in these data points, but it could also be an
indication of higher numbers of these process types having existed during the gap.

A summary of the observed (via ps) terminated and added Dante negotiate pro-
cesses can be seen in Figure 54. For the gap period there is a step up in the number of
both terminated and new processes. As visualized in Figure 48 and noted above, this
number will likely be underreported, meaning that a higher number of Dante processes
was likely created and terminated during the gap period than for most of the surround-
ing time. There is however also an additional small step up at the beginning of the plot,
so these process spikes might be something that occurs from time to time.

The request processes (not shown) do not show similar behavior, but increases in
these processes might be very short-lived and not be reflected in the data.
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Figure 50: Time skip disk I/O

The CPU time of the negotiate processes, shown in Figure 55, provides some indi-
cation of the behavior during the gap period. Two types of CPU time are shown. The
aggregated total CPU time is calculated based on the known increases in CPU con-
sumption for negotiate processes over the entire measurement period, while the current
CPU usage corresponds to the sum of CPU usage of the currently running negotiate
processes. The figure shows two types of behaviors; a distinct step up in the known
CPU time consumption of negotiate processes, meaning that these processes did more
work than for the surrounding time in this period. The current total shows a reduction
in the CPU time during the gap, meaning that there has been a certain amount of churn
in the negotiate processes; most or all of the negotiate processes with a non-zero CPU
time running before the gap are no longer running after the gap.

As there does not appear to have been any significant changes for the other process
types, the behavior of the negotiate processes provides a possible explanation for the
behavior during the gap. Unless the behavior was the result of a bug, a possible cause
would be a spike up in short lived requests to the Dante server, that terminate during,
or shortly after, SOCKS processing. The server is already fairly highly loaded and a
burst of short requests would likely lead to new processes being created. An increase
in the number of processes and the number of short-lived requests would also lead to
increased overhead from Dante, as Dante currently removes idle child processes after
a certain amount of requests or child process run-time has passed.

If there is a significant number of requests, it would be expected that the running
negotiate processes would never be entirely idle with no clients, but it is clear from the
observed behavior that there has been both a significant amount of CPU usage from
negotiate processes and a replacement of the running negotiate processes.

This could be the result of the client behavior, with many negotiate processes being
terminated after a period with many requests ends, or if could be the result of how
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Figure 51: Time skip network I/O

requests are divided between the running negotiate processes, with many clients maybe
being handled by some processes and few or no requests being handled by others.

Currently, two mechanisms are used in Dante to determine if processes should be
terminated: process runtime and the total number of handled client requests. If, rather
than using available client slots in existing child processes, the behavior of Dante with
the client load that occurred in this time period resulted in processes without any clients
being terminated based on the process runtime or the number of requests handled, and
then new processes being immediately created to handle new clients, it might partly
explain the high load on the machine, as the behavior of Dante would amplify the
already increased load in these situations by increasing the overhead from Dante further
due to processes constantly being created and terminated, instead of being reused.

However, there is no information available on the number of processes actually
created by Dante during this period, and no information about the number of requests
handled by the different process types, so this is only speculation based on the infor-
mation available. The only thing that can be said for certain is that the machine was
overloaded during this period and that there appears to have been some churn in nego-
tiate processes.

Assuming that process replacement is part of the problem, it could be that changing
the way in which child processes termination is handled would improve the behavior
of Dante in similar situations of high load.

There are generally two reasons for dynamically terminating running processes:

• Adjusting to the current load.

• Reducing resource consumption due to leaks in libc or other third-party libraries
external to the Dante code itself.

With new processes forked to handle increases in load, it is necessary to terminate
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Figure 52: Time skip process counts

processes when the load decreases, and a decrease in load should be recognizable by
a corresponding increase in the number of free client slots. A sustained period with
a high number of free slots, and without any decrease in the number of free slots,
would possibly be a situation in which it would be prudent to decrease the number of
processes as it indicates that the load is not increasing.

Handling the second point should ideally not be necessary on most platforms, but
there are platforms/platform versions where long running processes might experience
resource leaks. For the negotiate and request process types, all requests will be lim-
ited in time and the amount of transmitted data so the number of requests is the most
relevant factor that will affect the likelihood of resource leaks. For the io processes
there is no limit on the duration of client sessions, or on the amount of data that can be
transmitted, so finding a good way to determine when to terminate a process might be
more difficult.

Regardless of how this limit is set, to avoid unnecessary overhead from process
termination and creation on platforms where resource leaks are not a problem, the limit
used to determine if a process should be terminated, for purposes other than adjusting
to reductions in system load, should likely be set quite high by default. It would then
be possible for users on platforms with resource leakage problems to reduce the limit
as appropriate. For other users, client processes could then run much longer, unless
terminated due to the need to adapt to the current load, in order to reduce unnecessary
process churn.
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Figure 53: Time skip Dante process counts
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Figure 54: Time skip observed terminated and new Dante negotiate processes
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11 Dante behavior
This section looks at some aspects of the behavior of Dante and how it can be observed
on the machine.

11.1 Process churn
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Figure 56: Observed Dante process churn

Dante makes use of multiple processes for handling client requests and Figure 56
shows the rate of process churn, being the sum of the number of terminated and created
processes on average per second (during each snapshot interval). Note that this is the
observed churn and there might have been short-lived processes that do not show up in
the collected data.

The figure shows a churn rate of around four processes per second, which is rela-
tively modest considering the high number of total processes. There are some observed
short spikes higher, upwards to 30 processes per second, but a rate of around four pro-
cesses should not be a problem with regards to performance overhead.

One motivation for terminating child processes is as noted above to avoid resource
leaks due to bugs in system libraries. A limitation here is that Dante does not move
active clients between processes (or allow termination of active io client sessions after
a specified time), so io child processes cannot be terminated as long as they have at
least one active client. This means that the io processes can essentially run forever if
at least one of its clients never terminates its connection to the SOCKS server (and it is
not terminated in another way).

The distribution of the actually observed process lifetimes is shown in Figure 57
and 99% of the observed processes have a lifetime of less than two minutes, meaning
that they are relatively short-lived.
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Figure 57: Observed Dante process lifetime CDF

There is however a long tail of longer-lived processes, shown in Figure 58. The
longest-lived processes have a lifetime of almost ten days, corresponding to the traffic
loss spike examined in Figure 8, at which all traffic was lost and most io processes were
terminated as a result; most likely the highest process lifetime would be longer if this
event had not occurred.

Overall, the observed process lifetimes would appear to often be somewhat short.
There is obviously a tradeoff in the server between quickly adapting to load changes
and the overhead from frequently creating and terminating processes, but the load ob-
served would appear to be sufficiently stable for a process lifetime of less than two
minutes to seem somewhat short. Possibly there is some room for handling this more
efficiently at the expense of complicating the algorithms Dante uses to decide whether
to terminate a process.

11.2 Client overhead

With multiple processes being used for handling clients, there is an obvious relationship
between the number of clients and memory usage. Figure 59 shows a scatter plot of
memory usage (VSZ) and the number of client slots and processes. This plot does not
consider that a large portion of the memory is shared between the processes, meaning
that the actually required memory is much smaller, but the relationships between the
different values are still interesting as client processes might still have variations in
memory usage.

The most obvious relationship is between the number of processes and memory
usage. The data does not however form a single straight line; there is some variation,
indicating that memory usage does not increase in an exact linear relation to the number
of processes. Either some processes or process types see increases in memory, for
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Figure 58: Observed Dante process lifetime CDF, upper range

example due to handling different numbers of clients, or the different process types
have different memory requirements.

The total number of client slots is also closely related to the number of processes,
and has an almost linear relationship with the amount of memory consumed. The total
number of used client slots and active I/O slots also show fairly linear relationships
with memory consumption; the overhead appears to increase with the load.

The memory actually consumed by each process, when shared memory is taken
into consideration, is unfortunately not available, but the observable behavior is largely
as expected, with the most interesting observation being that there is no abnormal or
unexpected behavior visible.

A scatter plot showing the relationship between client slots and transfer rates is
shown in Figure 60. Greatest variation is seen in the range between 7000 and 11,000
clients. The highest data rates are also observed in this range, with the peak slightly
below a send rate of 0.9 Gigabit/s (in one direction). For higher numbers of clients
only lower transfer rates were observed. While there might be many factors that can
influence transfer rates, and there are fewer data points for the periods when there are
more than 13,000 clients, it is possible to interpret the data as performance gradually
falling off for higher number of clients. In the range 13,000 to 16,000 active io clients,
the highest observed rate is around a send rate of 0.7 Gigabit/s (in one direction). How-
ever, lower rates are also observed with much lower numbers of clients, so the number
of clients is clearly not the only factor affecting performance. Obviously at least one
other factor must be the traffic pattern exhibited by the individual clients (e.g., interac-
tive telnet-style traffic, or FTP-style traffic). Changes in network capacity over the links
the traffic passes over between the Dante server and the machines it communicates with
will obviously also affect transfer rates.

A similar plot for the packet receive and send rate is shown in Figure 61 and the
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Figure 59: Dante client and process memory relationship

same relationship can be seen here. With between 7000 and 11,000 active io clients
there is large variation in the packet rate, while for higher numbers of active clients the
packet rate appears to gradually fall off.

The relationship between the total number of Dante processes and the packet rate
is shown in Figure 62, and again similar behavior appears to be present. The highest
transfer rates were measured with around 850 processes, and for higher number of
processes, gradually lower packet rates were observed. Again, however, lower rates
were observed with lower numbers of processes and there are fewer data points with
many processes, but there appears to be an upper limit on transfer rates that gradually
falls as the number of processes increases.

Figure 63 shows a scatter plot with the relationship between the number of active io
process clients and the CPU time consumption per second, and also here the same trend
can be seen; there is a peak in CPU usage at around 11,000 active io clients and, for the
values available, lower CPU usage is seen for higher number of clients. This is despite
the general trend, seen in the fitted line, being an increase in CPU usage along with
an increase in the number of clients. The CPU usage being lower for high numbers of
clients possibly indicates that the CPU in itself is not a limiting factor; less CPU time
appears to be spent when there are many clients. There are fewer data points in this
range, meaning that it is not possible to make any definite conclusions, but one possible
explanation is that at this point the overhead from handling all the clients, either in the
kernel, the machine hardware, NIC, or the network, limits the rate at which I/O can be
performed, and for this reason results in less CPU usage.

A more general look at CPU usage on the machine is shown in Figure 64, and
this figure shows that for high numbers of active io clients, the CPU idle time appears
to increase. The change in system CPU is much lower than for user CPU. The exact
reason for this behavior is unknown, but it does look like the CPU is idle around 10%
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Figure 60: Dante client and transfer rate relationship

of the time when the number of clients is between 12,000 and 14,000. Whatever the
bottleneck is at this point, it does not appear to directly be the CPU. Similar behavior
is seen when looking at the number of processes (not shown).

A look at the division of client slots is also interesting, in that it shows how many
clients can be found in the different stages of protocol processing.

An overview of the slot type ratios, showing the ratio of a given slot type to the
total number of slots available at a given time, is given in Figure 65. Around 85% of
the available slots are used, with most of these being io client slots. Around 1 − 2%
are negotiate processes and less than one percent are request slots. The number of free
slots lies at around 15%. With the exception of some spikes, most values are fairly
stable, despite variations in the load on the machine. As the main purpose of Dante
is to transmit data, this is a good sign as it indicates that most clients are in the I/O
state, and not busy with protocol negotiation or connection setup. If the majority of the
slots had been in negotiate or request processes, this would indicate either that most
client requests were very short (which is not necessarily a problem or an indication
of something being wrong), there being a communication problem resulting in long
SOCKS negotiations between Dante and the SOCKS clients, or a bottleneck in Dante
itself as it transfers the SOCKS clients between the different processes and phases
(negotiate, request, io).

Looking at the io client slots in more detail, the division of io client slot types is
shown in Figure 66. Around 90% of the available slots are used, with around half
of these being active I/O, and half being in progress, possibly indicating that there
are many short-lived client sessions or failed connect() attempts. Around 10% of the
available slots are free, meaning that there is a fairly good utilization of the available
resources and room for new client requests.

As the main purpose of the Dante server (apart from access control) is to transfer
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Figure 61: Dante client and packet rate relationship

data, it is interesting to look at the ratio of the total number of active io slots to the total
number of Dante processes. This should give a rough idea of how many processes are
required to handle a given number of active clients, for the client and traffic patterns
observed at this particular production site.

Figure 67 shows this ratio, which lies between 10 and 14 during the majority of
the time. The spike down at at the end of day 10 is clearly visible, indicating that this
ratio changes when there is no load present. However, for the majority of the time,
around one Dante process will be needed per 10 − 14 active I/O clients. This number
is somewhat lower than the total number of clients that can be handled in a single io
process, which is 32 with the current default compile time value. The extra process
overhead is likely to be mainly a result of the high number of client sessions that are
in progress3 in the io clients. If all used io slots are considered, also those in-progress,
the number becomes a fairly stable 25, which is much closer to the 32 limit.

Finally, we look at the CPU time spent per io client, on average. Figure 68 shows
both the number of active io client slots, and the amount of CPU time spent per client.
The total number of active clients has a significant amount of variation, but the CPU-
time spent per client is much more stable. There are some spikes in the data, but for the
most part it would seem that the overhead per client is fairly stable, making it possible
to estimate the capacity of the machine based on these values; a per-client CPU time
of 0.001 second gives at most 16,000 clients before the CPU would definitely be a
bottleneck. This assumes that the system scales linearly, which is likely not the case,
but it is still interesting to see that the highest spike up in active io clients is up towards
16,000.

In summary, Dante uses a fixed number of clients per process, meaning that the
number of processes increases with the client load. There are some indications that

3Waiting for the connection to the target server to complete.
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Figure 62: Dante process count and packet rate relationship

transfer rates gradually start decreasing with higher number of clients (and processes),
but no definite correlation was found between the number of processes and the slightly
lower transfer rates.
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Figure 63: Dante io client and CPU usage relationship
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Figure 64: Dante I/O client and general CPU usage relationship
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Figure 65: Slot type ratios, all child processes
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Figure 67: Slot type ratios, io slots to all Dante processes
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12 Free slot management

A previous performance report [1] noted that a possibly higher than necessary number
of free slots were available in version 1.3.1 of Dante. The number of free slots also
varied quite significantly in that version.

This behavior now appears to be improved, with a smaller percentage of the total
number of slots being unused. In version 1.3.1, the number of free slots was at times
observed to be upwards to 50% of the total number of slots, while for version 1.4.0,
this number lies fairly stable at around 15%, as seen in Figure 65.

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10  12  14  16

C
lie

nt
 s

lo
ts

 (
th

ou
sa

nd
s)

Time (days)

Free - io
Free - negotiate

Free - request

Figure 69: Free Dante client slots

The actual numbers of free slots for the different client process types is shown in
Figure 69. While percentage wise they are not so large, they are still somewhat large
in absolute numbers; the number of free io client slots vary between 1000 and 3000 for
most of the time, while the number of free negotiate slots lies around 800− 1000. The
number of free request slots is about 75.

These number might still seem a little high, but there is a tradeoff between being
able to quickly serve a sudden burst of clients by having an adequate reserve of free
client slots available, and having to suddenly create many new processes and having
the clients wait for process creation and setup to complete. There is also the practical
problem of adjusting slot numbers as it is only possible to terminate a process when it
no longer has any clients.

Still, it would seem that the number of free slots could ideally be more similar be-
tween process types. As each client request must pass through each process type before
it is completed, and not all requests can be expected to be completed successfully, it
would seem logical that the highest number of free slots would be needed in the ne-
gotiate process, and fewest in the io processes. As noted above, practical difficulties
make it difficult to quickly adjust the number of free slots to a desired number, but there
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might still be some room for reducing resource consumption by having fewer free io
slots available, to the extent that this is possible.
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13 Summary and conclusions
This summary is split in three parts:

• Our conclusions regarding the data collection procedure.

• Our conclusions regarding the state and configuration of the machine on which
Dante was running.

• Our conclusions regarding the behavior and performance of the Dante server.

13.1 Data collection and analysis procedure

A set of shell scripts running various system commands such as ifconfig, ps and top
was used to collect information about Dante and the machine it was running on.

Overall, this procedure worked well, and it was possible to analyze and understand
much of what occurred on the machine in the two week period that was examined, even
if not all situations were equally simply to analyze.

The biggest limitation was that additional data that would have been useful was not
available. For this analysis, this included the following:

• Per-protocol byte information (UDP/TCP).

• Per-application (Dante) byte information.

• TCP connection states.

• Aggregated Dante child process creation counts.

• Aggregated Dante client counts.

• Total terminated Dante child process used CPU time.

The first was partly compensated for by having packet counters for each proto-
col, but not having exact byte information available made it impossible to attempt to
estimate, for example, UDP transfer rates, which would have been interesting when
analyzing the relationship between UDP and CPU usage on the machine.

For Dante, interesting information is known by the Dante processes, but obtaining
this information without significantly increasing the overhead from logging is currently
not possible. The amount of information potentially obtainable via setproctitle() is also
somewhat limited, so this is a problem it might be necessary to live with.

Adding kernel-based interfaces for collecting this information would solve many of
these problems, but would make deploying the data collection scripts much more dif-
ficult, and also impose an added overhead on the kernel, with unknown consequences
in general. On some platforms, tools such as DTrace might provide ways of storing
information about processes as they terminate, but this would again impose additional
overhead and increase storage requirements.

Minor tweaks and incremental improvements to the current approach, such as adding
an overview of TCP connection states based on netstat, and using a more exact delay
between collection intervals will likely suffice for the near future, as long as the limi-
tations are know and considered during analysis.
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13.2 Machine state and configuration
The machine running the Dante server examined in this document is a fairly powerful
machine with many CPUs and a high amount of memory.

The machine was fairly highly loaded, with CPU usage of 90% across 16 CPUs
and transfer rates of around 0.7 and 0.8 Gigabit/s in each direction, giving a total rate
of data passing through the machine of around 1.5 Gigabit/s for much of the time.
The machine generally appears to have handled this load well, with the exception of
some shorter periods when it became overloaded and unable to handle scheduling in a
timely manner. The machine also has a certain amount of dropped packets, likely due
to periods of high system load.

Memory never appeared to be a problem; more than enough was available at all
times and the machine never started swapping.

There is very little disk I/O being done on the machine, with most of the data being
written to disk coming from the data script used to collect data for the performance
analysis in this report.

13.3 Dante behavior
The Dante server on this machine handles a high load, with up towards 25,000 active
clients and traffic rates of around 1.5 Gigabit/s, including both TCP and UDP traffic.

The CPU usage of Dante lies at around 80 − 90%, with data forwarding by Dante
being the main activity on the machine. Most of the Dante processes, and most of the
CPU usage, comes from the Dante io child processes that handle forwarding of data
between clients and their target peers. The number of Dante io processes vary between
600 − 800. Active io client numbers vary between 17,500 and 25,000, with around
10,000 clients in the in progress state, waiting for connect() to complete. Approxi-
mately 475 clients are active with SOCKS protocol negotiation and around 30 clients
are in the connection setup request state.

The data set also provides several opportunities for looking at the behavior of Dante
under interesting situations, such as a sudden full loss of network traffic. At the end
of day 10 in the data set, all network traffic to the machine appears to stop, resulting
in no data being forwarded. This state persists for around 15 minutes and causes the
Dante server to reduce most of the resources it uses by terminating unused processes,
likely as the TCP connections to the clients terminate. When the traffic returns, the
Dante server reverses the process, by creating new processes to adapt to the suddenly
returning high load.

The only unexpected observation made during this period of traffic loss was that as
many as 71 request processes still remained unkilled, a much higher number than for
the other child process types. This is something we will need to investigate further.

One additional observation made in relation to the period of traffic loss was that the
overhead from handling UDP traffic appears to be more CPU intensive than TCP. TCP
traffic in general appears to have a much lower effect on CPU usage than UDP traffic.
The underlying reason for this is that much more work is required by a SOCKS server
to process UDP requests compared to TCP requests, because SOCKS UDP headers
must be be added or removed for each UDP packet, while TCP traffic can be forwarded
directly as long as encryption is not enabled.

An issue partly related to this is that a large part of the overhead from a SOCKS
server comes from data movement within the machine. Network data must be read
from the network, copied to kernel memory, copied to application memory and then
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pass back the other way. Around half of the CPU time spent on the machine comes
from the system/kernel, and data copy operations likely make up a significant portion
of this time. Copy elimination techniques such as splice() can likely aid in reducing
this overhead. For UDP (or encrypted TCP traffic) using these types of techniques will
be much more difficult due to the need for processing in the application, but for the
common usage scenarios such as the one found on this machine, reducing the over-
head from TCP will likely benefit also UDP by freeing up CPU time and memory bus
capacity.

Another area in which improvements are possible is in the handling of client pro-
cess termination and creation, especially with regards to the negotiate processes. There
are indications that some periods of especially high load saw a high degree of possibly
unnecessary process churn, resulting in a further increase in the system load when the
system was already highly loaded. Possibly this is a result of already running child
processes without any currently active clients being terminated only to a short time
later be replaced by a new process of the same type. The decision to terminate inactive
child processes is based on the number of requests handled and total runtime for each
process, and if either is satisfied, processes are terminated despite there potentially be-
ing a high number of client requests. A slightly more complex algorithm, taking into
consideration a few other additional factors, might be beneficial.

A related issue, handling of free client slots, appears to have improved compared
to version 1.3.1 of Dante, with a much more stable number of free client slots, but also
here there is possibly room for additional improvement as there appears to generally
be a much higher number of free io client slots, compared to negotiate and request
slots. This is despite clients first needing to progress through both the negotiate and
request processes before needing an io process slot. While doing exact adjustments do
the number of available slots is difficult, especially for io processes where there is no
upper limit on how long client sessions can last, being able to reduce the number of
processes further would free up unneeded resources.

A peak performance point related to the number of clients/processes and achievable
packet rates was possibly observed on the machine, but no definitive conclusion could
be made as to if this was due to the system overhead from handling the high number
of connections and processes, or if it was because of some other reason, external or
otherwise.

In summary, the Dante server is able to handle a very high load with tens of thou-
sands of clients, at times, almost at saturated Gigabit link speed. It is also able to
quickly adapt to changes in load. Still, there are some areas that can likely be im-
proved for even better performance.

Feedback for this document can be sent to misc-feedback@inet.no.

69



References
[1] Inferno Nettverk A/S. Performance analysis of dante version 1.3.1. Technical

Report 1, Inferno Nettverk A/S, http://www.inet.no/dante/doc/1.3.
x/dante_performance_1.3.1.pdf, August 2011.

70


