
 1 / 21

Dante – a BSD licensed SOCKS implementation

Inferno Nettverk A/S

Bergen Linux User Group

2005-11-24



 2 / 21

Background (1)

Inferno Nettverk A/S started as security consulting company

• goal: sell OpenBSD based firewalls/security solutions.

• packet filter existed in OpenBSD, wanted general proxy in
addition.

• SOCKS5 implementation commercial, original V4 with free
license.

• plan: add support for V5 of socks standard to free
implementation.

• work started 1997/09/26 12:35:33.

• first release on the 16th of Nov 1998 (version 0.90.0).



 3 / 21

Background - first announcement
Subject: Dante - a free socks client and server implementation for UNIX

To: socks@socks.nec.com

Date: Mon, 16 Nov 1998 15:30:04 +0100

X-Mailer: Mutt 0.89.1

Inferno Nettverk A/S, Oslo, Norway

Monday, November 16, 1998

Inferno Nettverk is pleased to announce the first public alpha release

of Dante - a free socks client and server implementation for UNIX.

It currently supports v4 and v5 (sans GSSAPI) of the socks protocol

and is available under a BSD/CMU-type license with complete source code.

Dante can be downloaded from ftp.inet.no:/pub/socks/danta-alpha.tar.gz.

One should note that Dante is currently somewhat, to put it politely,

lacking in documentation, but we are working on that too.

For more information, please see http://www.inet.no/dante.

(This implementation includes a small experimental extension to the

v4/v5 protocol that provides a more generic bind functionality, such

as that which might be expected by server applications like e.g ftpd.

It can be enabled by providing the magic line "extension: bind" at the

correct place in the server and client config file.)



 4 / 21

Today

Inferno Nettverk A/S no longer limits itself to security consulting,
but also offers general UNIX-based development, from
web-programming to low-level network programming.

Dante
• ended up being a total rewrite.

• over 20 releases so far (excluding prereleases).

• has been described as scalable and stable by users.

• many large international companies among users.



 5 / 21

SOCKS



 6 / 21

Connection establishment - normal network

Server

Gateway/firewall

User

Internet



 7 / 21

Connection establishment - SOCKS network

Server

Gateway/firewall

User

Internet

SOCKS server



 8 / 21

SOCKS protocol - overview (1)

• general proxy protocol.

• version 5 defined in rfc1928.

• client hosts do not make connections directly, but via SOCKS
server.

• hides internal network (ala NAT).

• authentication possible (PAM, username/password).



 9 / 21

SOCKS protocol - overview (2)

Commands: CONNECT, BIND, UDP ASSOCIATE

• outgoing TCP connections (CONNECT).

— e.g. HTTP

• outgoing UDP packets, and reply (UDP ASSOCIATE).

— e.g. DNS

• incoming TCP connections, originaly from known IP/port
number (BIND), but today interpreted more lose.

— typically active FTP

Other

• bind extension.

• GSSAPI (unsupported).



 10 / 21

SOCKS protocol - overview (3)

Why use SOCKS?

• user authentication (allows per user resource accounting).

• avoids having traffic from bad TCP/IP implementations on the
Internet.

• firewalls good for regulating incoming traffic, SOCKS for
outgoing.



 11 / 21

Dante configuration - server (1)

Dante server rules operate on two levels.

client-rules Rules prefixed with "client". Control access to the
Dante server at the TCP level. Authentication possible here too
(e.g. PAM or ident).

socks-rules Control access via the Dante server, operating at the
socks protocol level.

Simple configuration; pass in/out all traffic.

internal: fxp0 port = 1080

external: fxp1

method: none

client pass { from: 0.0.0.0/0 to: 0.0.0.0/0 }

pass { from: 0.0.0.0/0 to: 0.0.0.0/0 }



 12 / 21

Dante configuration - server (2)

Add user authentication.

As above, but change "method: none" to "method: username".



 13 / 21

Dante configuration - server (3)

Limit access based on user/IP-address. As above, but create
individual rules for each user/IP-address group instead of one
global:

block { from: 0.0.0.0/0 to: .naughty.com port = http }

pass { from: 0.0.0.0/0 to: 0.0.0.0/0 port = http

user: big-boss

log: connect disconnect }

pass { from: 0.0.0.0/0 to: 0.0.0.0/0

user: awk }

pass { from: 0.0.0.0/0 to: 0.0.0.0/0 port = http

maxsessions: 10

bandwidth: 102400 }

pass { from: 0.0.0.0/0 to: 0.0.0.0/0 }



 14 / 21

Dante configuration - client (1)

Clients wishes to establish a connection to a given address/port.
This cannot be done directly, request must be done via SOCKS
server.

• scenario 1: Client support for SOCKS standard

— configure client to use server (e.g. browser)

• scenario 2: socksify

— allows (dynamically linked) programs to use socksify without
changes.

— LD PRELOAD based approach, works on most UNIX
platforms.

— client part of SOCKS protocol in Dante libdsocks library.

— system calls intercepted, connections made via SOCKS
server.

— client configuration in global socks.conf.



 15 / 21

Dante configuration - client (2)

• scenario 3: windows

— program which socksifies the entire system exists. Not from
Inferno Nettverk.

• scenario 4: no preload support

— applications must be recompiled if possible.



 16 / 21

Dante configuration - client (3)

Client-configuration simpler, only a route statement required.

route { from: 0.0.0.0/0 to: 0.0.0.0/0 via: 10.1.1.1 port = 1080

proxyprotocol: socks_v5 socks_v4

proxyprotocol: http_v1.0

proxyprotocol: msproxy_v2

method: none username

}

Multiple routes might exist, client will try first working one.



 17 / 21

Dante modules

Dante partially financed by support contracts. The module
concept is an experiment in selling extra functionality.

At the moment three modules exist.

• redirect - redirection of connections and control over
address/port-usage.

• bandwidth - bandwidth limitation.

• session - limit sessions (not official yet).



 18 / 21

Experiences

Dante originally developed on OpenBSD, then ported to various
UNIX platforms.

• before: nice and elegant code, after: spaghetti of #ifdef’s.

• have tried to limit this, by adding missing functionality in
library.

• have found many OS bugs, often in Linux and Solaris (2.5
especially).

• bugs in OpenBSD easy to fix, must work around in many other
cases.

• preloading especially difficult, header files contain much
strangeness (esp. Linux and OSF).



 19 / 21

Development

Much work this year on testing architecture.

• runs various applications with and without SOCKS, compares
result.

• automated testing, different configuration files for each test.

• several bugs found, mainly in rarely used parts of the code.

• example: client support for http proxy servers; errors were not
handled correctly.

• main benefit is catching bugs introduced during development.

• currently used internally only, generalisation is long term goal.

• partial support for server chaining new feature in next version.



 20 / 21

Possible extensions

Routers and firewalls see packets, while all traffic passes through
SOCKS server as a sequential stream. Makes some creative usages
of the SOCKS server potentially possible.

• inspection of data stream; identification of downloaded data
types.

• protocol decoding, and identification of application.

• possible usage: blocking traffic from P2P networks.



 21 / 21

Future

Initially many new features introduced. System considered stable
for the last couple of years, no big changes made.

Current focus is on bug fixing and maintainance.


