
Inferno Nettverk A/S
Technical Report

Analysis of Real-Time scheduling functionality in
Dante version 1.3.2.2

March 7, 2012

1

Contents
1 Introduction 3

2 Test environment 3
2.1 Machine Description . 3
2.2 Dante Configuration . 3

3 Real-time behavior analysis 4
3.1 Baseline (no CPU or IO-load) . 4
3.2 Effects of CPU load . 5
3.3 Effects of external network load . 7
3.4 Effects on latency from internal network load 8
3.5 Observed effects of bulk data transfers on RTT 9

4 Configuring Dante for Real-time scheduling and usage comments 10

5 Summary 11

List of Figures
1 Baseline RTT . 5
2 Baseline data transfer rates . 6
3 RTT with CPU load . 7
4 Data transfer rates with CPU load 8
5 Aggregated data transfers with CPU load 9
6 RTT with external traffic load . 10
7 Data transfer rates with external traffic load 11
8 RTT with internal traffic load . 12

2

1 Introduction
This report documents the results of an analysis of the performance and behavior of
the real-time related functionality found in version 1.3.2.2 of the Dante SOCKS server
implementation from Inferno Nettverk A/S. This version is not publicly available, but
the functionality described in this document will likely be included in the upcoming
public 1.4.0 version.

Two new keywords have been added in this version that makes it possible to specify
the real-time scheduling algorithm and priority of Dante process types. Dante processes
can also be bound to specific CPUs (CPU affinity).

2 Test environment
The tests described in this document are made in a simple test environment with three
test machines and synthetic loads. Two different network switches are used. One
switches traffic between the SOCKS clients and the Dante proxy, while the other
switches traffic between the Dante proxy and the remote server. There is no other
traffic of significance between the three machines at the time of testing. In some of the
tests a second server machine is also used to receive traffic, or an extra client machine
is used to generate traffic.

2.1 Machine Description
The machine used to run Dante has a 2 core 2.4 GHz Intel Core2 processor and two
one-Gigabit networking cards. Traffic to and from the client is transmitted over one
interface and traffic to and from the server is transmitted over the other interface. The
machine runs Linux, with kernel version 2.6.18 installed.

2.2 Dante Configuration
A snapshot of Dante 1.3.2.2 is used for testing. No special configure options are used
and debugging is not enabled during compilation.

A simple configuration that forwards traffic is used in the server. Traffic informa-
tion is at most only logged at the beginning and end of client sessions. This configura-
tion is similar to what would be expected in a production environment.

Several variations of the real-time keywords are used in the tests. The following
shows an example where the scheduling algorithm, priority, and the CPUs to use, is
specified:

#enable real-time scheduling scheduling
cpu.schedule.mother: fifo/10
cpu.schedule.negotiate: fifo/10
cpu.schedule.request: fifo/10
cpu.schedule.io: fifo/15

#use only CPUs 0-2
cpu.mask.mother: 0 1 2
cpu.mask.negotiate: 0 1 2
cpu.mask.request: 0 1 2
cpu.mask.io: 0 1 2

3

3 Real-time behavior analysis

The purpose of these tests is to examine the effects of using the new real-time func-
tionality in different usage scenarios. The three basic scenarios that will be looked
at is having no load on the proxy machine, having a significant amount of CPU load
from non-Dante processes, and having a significant amount IO traffic (both in other
processes and passing through Dante). The behavior of Dante in these environments,
when the real-time functionality is enabled, is compared to the behavior when the func-
tionality is not enabled (the default/traditional behavior).

In addition to measuring the characteristics of traffic passing through Dante and
other user-space processes, the performance when the traffic does not pass through
Dante but is instead forwarded to the server via an iptables based NAT mechanism is
also included. Because this mapping does not require traffic to pass via user space
it gives an indication of what the optimal performance would be on the test machine
(with only the hardware and kernel as performance limitations), and should closely
match the performance of routing the traffic via a Linux-based layer 3 router (routing
via the slow path).

Most tests are repeated at least three times, with the results from one of the test-runs
shown, unless there are significant variations between the different test-runs.

Two types of traffic are generated in the tests. To measure latency a single-byte TCP
request is sent to an echo server process on the server machine. The Round-Trip-Time
(RTT) is calculated as the time from the the client sends a single-byte request until the
reply has been received. The client then immediately sends a new request as soon as
a reply has been received. This process is repeated for the test duration of 60 seconds,
with information about the measured latency being logged each second. Values such
as the lowest, average and median latency is stored.

To measure throughput, the client connects to a chargen server process on the server
machine and the total amount of data that is received in the span of 60 seconds is
measured. The transfer rate is also measured each second.

All tests are run in sequence but are shown in the same plot to allow for easier
comparison.

3.1 Baseline (no CPU or IO-load)

To establish a baseline for comparison, the latency was examined with no other load
on either of the test machines.

A single TCP connection to the echo server is established through the Dante server
and the RTT of a single byte being transmitted to the server and back is measured. This
traffic places only a minimal load on the system and should give the lowest RTT values
possible for the given combination of hardware, operating system, and software.

Figure 1 shows the resulting RTT values. There is little variation in either the me-
dian or average latency and both values are essentially identical regardless of whether
the real-time functionality has been enabled or not. Both the median and average RTT
values are at around 500 µs. The latency for the traffic forwarded via NAT is as ex-
pected lower, at 460 µs, so the cost of sending the traffic (a single byte) via Dante
appears to be around 40 µs, compared to kernel based routing/NAT.

There is some variability in the lowest RTT values measured, but this is to be ex-
pected because the traffic passes between three machines, two switches and three dif-
ferent user-space applications.

4

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70

R
T

T
 (

m
ic

ro
se

co
nd

s)

Time (s)

Round trip times

Default - RTT - avg
Default - RTT - med

RT - RTT - avg
RT - RTT - med

NAT - RTT - avg
NAT - RTT - med

Default - RTT - min
RT - RTT - min

NAT - RTT - min

Figure 1: Baseline RTT

The baseline for the transmitted data is shown in Figure 2. In this test, 100 TCP
clients are run in parallel and receive data from the chargen server, with 10 clients
started each second from the start of the test. The sum of the transfer rates of all clients
(as measured on the client side) is shown in the plot.

As with latency, there is no significant difference between using real-time schedul-
ing or the default settings when there is no other load on the machine. The aggregated
transfer rates lie at around 895 MBit/s. The measured rates for the traffic forwarded
via NAT shows less variation than for the traffic passing through Dante, but the total
rate lies at around the same value.

3.2 Effects of CPU load
To create a scenario where real-time scheduling is more likely to have an effect, a CPU
based load is added to the machine running Dante. The load basically consists of a
program that maintains a set of up to ten CPU intensive processes that run for roughly
one second before terminating and being replaced by a new process. Each process
performs a simple mathematical operation in order to use the CPU but does not use the
disk or network. The number of CPU intensive processes exceeds the number of CPU
cores/processors on the machine, and the processes are also given a nice(1) value of
−3 to give them priority over the Dante processes, which run with the default nice(1)
value of zero.

Figure 3 shows the resulting latency values. As with Figure 1, the values are mea-
sured using a single TCP connection; there is no other load on the proxy. The primary
difference is that the average latency measured often diverges from the median value
when the default (i.e., not real-time) scheduling is used, indicating that there are several
spikes with higher latency when the default configuration is used. This is not observed

5

 600

 650

 700

 750

 800

 850

 900

 950

 0 10 20 30 40 50 60 70

R
at

es
 (

M
bi

t/s
)

Time (s)

Aggregated transfer rates

NAT
RT

Default

Figure 2: Baseline data transfer rates

when the real-time functionality is enabled (here the fifo scheduling algorithm is used).
This effect was also seen with a slightly higher numbers of parallel connections.

The traffic load here is quite light, but the difference between using and not using
real-time scheduling indicates that using real-time scheduling might reduce the like-
lihood of other processes having a negative impact on the latency of traffic passing
through Dante. Using real-time scheduling appears to provide a latency that averages
very close to the median, without sudden latency increases.

The effect of CPU load on accumulated transfer rates is shown in Figure 4. Here
the CPU load clearly has an impact on the performance of Dante and results in much
less consistent transfer rates than when real-time scheduling is used. At the lowest
point the aggregated transfer rate falls to 245 Mbit/s, when the default scheduling
algorithm is used. When real-time scheduling is used (here the rr algorithm), the rate
is not significantly changed compared to when there is no CPU load (see Figure 2).

As expected, having less access to the CPU results in less data being transmitted.
Figure 5 shows the aggregated number of bytes transmitted via Dante. Comparing the
NAT forwarded traffic and the traffic that passes through Dante when real-time schedul-
ing is used, the default scheduling algorithm gives worse performance; 5.4 GByte is
transmitted during the test period, compared to 6.3 GByte when real-time scheduling
is used.

Note that some experimentation was needed to find a way to generate a CPU load
that would actually give a negative impact when real-time scheduling was not used.
Unless other processes that are very CPU intensive or use real-time scheduling run on
the same machine as Dante, the benefits from using real-time scheduling might be less
than what is seen here.

6

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70

R
T

T
 (

m
ic

ro
se

co
nd

s)

Time (s)

Round trip times

Default - RTT - avg
Default - RTT - med

RT - RTT - avg
RT - RTT - med

NAT - RTT - avg
NAT - RTT - med

Default - RTT - min
RT - RTT - min

NAT - RTT - min

Figure 3: RTT with CPU load

3.3 Effects of external network load

This test looks at the effects of external network traffic on latency and basically creates
a worst case scenario where bulk traffic saturates the link. Two Dante servers are run
on the proxy machine, each with a separate type of traffic passing through it. A single
TCP connection is opened via one of the Dante servers in order to measure latency
as above. The other Dante server is only used to create the network load, by having
100 TCP connections opened via it to the chargen server. Different client machines
are used for latency measurements and the bulk data transfers, and there are similarly
two different machines used for the chargen and echo servers; each client connects to
a different server via different Dante servers, but both Dante servers run on the same
machine. The data from the chargen server essentially saturates the link and results
in most of the CPU time being spent in the kernel or processing interrupts. The bulk
traffic load is started roughly ten seconds after the latency measurements start.

Figure 6 shows the latency for this usage scenario. The point at which the network
load is added is clearly visible on the graph as the latency starts rising. There is no clear
reliable benefit from using real-time scheduling in this case, which is not surprising as
the resource being contended is not the CPU but the network/IO-bus. Even the traffic
forwarded via NAT does not show significantly lower latency than the traffic that passes
through Dante; the bottleneck here appears to be hardware related.

To examine the effects that the external network traffic has on transfer rates through
Dante, the external load is reduced to 50 TCP connections and an identical load of
50 TCP connections are opened via Dante. The effects can be seen in Figure 7. The
total rate is halved, which is not surprising because both client machines have the same
number of connections open to the same chargen server, splitting the available network
capacity between the connections that receive data. Use of real-time scheduling does

7

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70

R
at

es
 (

M
bi

t/s
)

Time (s)

Aggregated transfer rates

NAT
RT

Default

Figure 4: Data transfer rates with CPU load

not provide any difference in this case either, again most likely because the bottleneck
is not the CPU.

Interestingly, the NAT traffic shows markedly degraded performance in this sce-
nario. The reason for this is unknown, but possibly the kernel based forwarding mech-
anism does not perform well when there are user space processes that compete for
the networking capacity, even when real-time scheduling is not used by the user space
processes.

3.4 Effects on latency from internal network load

Finally we look at the effects that bulk data transfers passing through Dante can have
on the latency of traffic also passing through the same Dante processes. 100 TCP
connections are established to the chargen server to create the network load, and one
TCP connection is established to the echo server to measure latency. As the traffic
from the chargen server will saturate the link and only a single byte is transmitted each
time the latency is measured, this represents a worst-case scenario with regards to the
influence the bulk traffic can have on the measured latency.

Figure 8 shows the results for this usage scenario, and here real-time scheduling
has a positive effect on latency, giving lower RTT values. The rr scheduling algorithm
was used in the server, along with CPU affinity for the Dante io process (the io process
was also bound to one of the two cores on the machine).

The baseline rate plot in Figure 2 shows that enabling real-time scheduling does
not improve transfer rates, but having real-time scheduling enabled appears to have a
positive effect on the measured RTT when there is also a significant bulk data transfer
load.

8

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70

T
ra

ns
m

itt
ed

 to
ta

l (
G

by
te

s)

Time (s)

Aggregated transmitted bytes

NAT
RT

Default

Figure 5: Aggregated data transfers with CPU load

3.5 Observed effects of bulk data transfers on RTT

The Linux machine used for testing shows what appears to be a correlation between
sustained bulk data transfers and increasing RTT values. This can be seen in Figure 6
and Figure 8.

In Figure 6, the measured latency is shown to increase gradually. This increase
is very gradual and does not appear to be random. It also occurs even if the TCP
connection used to measure latency does not pass through Dante but is forwarded via
NAT without passing via a user space application. The bulk data in this experiment is
always passed through user space, while we experimented with letting the data used for
calculating latency pass either through Dante or through the NAT layer when analysing
the behaviour observed here.

Figure 8 shows that the same behavior is seen when real-time scheduling is not
used, and that real-time scheduling has a positive effect on latency by reducing the
angle of the slope. The NAT traffic does however show a different behavior. In this case
the latency increases quickly as new connections are being added and then remains flat.
Both the connections to the chargen server and the connection to the echo server are
forwarded via NAT so no user-space applications are used in this case.

This behavior does not appear to be Dante-specific and was only observed when the
link is fully utilised (transfer rates at around 900Mbit/s). Most likely this behavior is
the result of the machine becoming overloaded; this type of behavior was not seen on
a different and slightly more powerful machine running an essentially identical Linux
kernel.

9

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60 70

R
T

T
 (

m
ic

ro
se

co
nd

s)

Time (s)

Round trip times

Default - RTT - avg
Default - RTT - med

RT - RTT - avg
RT - RTT - med

NAT - RTT - avg
NAT - RTT - med

Default - RTT - min
RT - RTT - min

NAT - RTT - min

Figure 6: RTT with external traffic load

4 Configuring Dante for Real-time scheduling and us-
age comments

Dante uses multiple processes with dedicated tasks. The primary process types are as
follows:

Mother Accepts connections from clients and forwards clients between the other three
Dante process types.

Negotiate Handles SOCKS protocol negotiation.

Request Opens connections to external hosts.

IO Handles I/O.

The first three handle different phases of session setup and the last handles commu-
nication between the client and the remote server after the session setup has completed.

To influence the time required for connection setup and latency, real-time schedul-
ing must be set for all four process types. This can be done as follows, giving a slight
preference to reducing the latency of clients that have already finished establishing their
sessions via the Dante server:

cpu.schedule.mother: rr/10
cpu.schedule.negotiate: rr/10
cpu.schedule.request: rr/10
cpu.schedule.io: rr/15

10

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70

R
at

es
 (

M
bi

t/s
)

Time (s)

Transfer rates

NAT
RT

Default

Figure 7: Data transfer rates with external traffic load

Most of the time is however spent in the IO process, which means that unless the
connection setup time is important it should suffice to specify real-time scheduling for
this process type, for example in this way:

cpu.schedule.io: rr/15

In general, we recommend that CPU affinity is also used when a real-time schedul-
ing algorithm is used and that at least one CPU/CPU core is left free as a safety mech-
anism to prevent Dante from potentially consuming all available CPU capacity and
preventing other processes on the machine from running properly.

Assuming a machine with four CPUs is used, this can be done in the following way,
by specifying that only the first three CPUs should be used:

cpu.mask.mother: 0 1 2
cpu.mask.negotiate: 0 1 2
cpu.mask.request: 0 1 2
cpu.mask.io: 0 1 2

Or alternatively, if only the IO processes use real-time scheduling:

cpu.mask.io: 0 1 2

5 Summary
This technical report has examined the performance of Dante when real-time schedul-
ing and CPU affinity is used in the Dante server.

11

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60 70

R
T

T
 (

m
ic

ro
se

co
nd

s)

Time (s)

Round trip times

Defeault - RTT - avg
Default - RTT - med

RT - RTT - avg
RT - RTT - med

NAT - RTT - avg
NAT - RTT - med

Default - RTT - min
RT - RTT - min

NAT - RTT - min

Figure 8: RTT with internal traffic load

Using real-time scheduling can improve performance, both with regards to lower
latency and higher throughput, but the benefits depend on the traffic and system load.
We recommend doing comparison tests to examine whether there are benefits in a given
usage scenario.

Feedback to this paper can be sent to misc-feedback@inet.no.

12

